US ERA ARCHIVE DOCUMENT

2,2.94

MRID No. 421455-01

DATA EVALUATION RECORD

- 1. CHEMICAL: Benefin. Shaughnessey No. 083401.
- 2. TEST MATERIAL: Benefin (N-(n-butyl)-N-ethyl-2,6-dinitro-«,«,«-trifluoro-p-toluidine); Lot No. 231EF4; 95.64% purity.
- 3. <u>STUDY TYPE</u>: Avian Reproduction Study. Species Tested: Mallard duck (Anas platyrhynchos).
- 4. CITATION: Murray, A.G., J.R. Smith, and D.W. Grothe. 1991.
 The Toxicity of Benefin to Mallards in a One-Generation
 Reproduction Study. Laboratory Project No. A01090. Prepared
 by Toxicology Research Laboratories, Lilly Research
 Laboratories, Greenfield, Indiana. Submitted by DowElanco,
 Indianapolis, Indiana. EPA MRID No. 421455-01.
- 5. REVIEWED BY:

Rosemary Graham Mora, M.S. Associate Scientist KBN Engineering and Applied Sciences, Inc.

6. APPROVED BY:

Michael L. Whitten, M.S. Wildlife Toxicologist KBN Engineering and Applied Sciences, Inc.

Henry T. Craven, M.S. Supervisor, HED/EFED USEPA

signature:

Date

signature: Michael & White

Date: 4/23/92

Date:

- 7. CONCLUSIONS: This study is scientifically sound and fulfills the guideline requirements for an avian reproduction study. Mean measured dietary concentrations of benefin at 97 ppm, 288 ppm, and 975 ppm had no effects upon mortality, behavior, or adult food consumption in mallards during the 22-week exposure period. The NOEC was 288 ppm, due to an increase in the percentage of eggs cracked at 975 ppm.
- 8. RECOMMENDATIONS: N/A.
- 9. BACKGROUND:
- 10. DISCUSSION OF INDIVIDUAL TESTS: N/A.

11. MATERIALS AND METHODS:

- reared mallards (Anas platyrhynchos) purchased from Whistling Wings, Hanover, Illinois. All birds were of the same hatch date. For this study, 174 birds were quarantined and acclimated to the facilities for 3 weeks prior to initiation of the test. One male and one female were assigned to each pen. At test initiation, two pairs of birds were rejected due to weight loss and were replaced. The birds were 18 weeks of age at the beginning of the preproduction phase of the study.
- Dose/Diet Preparation/Food Consumption: Test diets B. were prepared on a weekly basis by dissolving the appropriate amount of benefin in acetone. This mix was added intermittently to two 8-kg batches of diet and mixed for 15 minutes. These two treated batches were combined with 104-kg batches of untreated diet and mixed for 10 minutes. The control diet and three test concentrations (100, 300, and 1,000 parts per million [ppm]) were prepared weekly and presented ad libitum to the birds. Each of the four groups of adult birds was fed the appropriate diet from test initiation until terminal sacrifice. The potency of the test material was assumed 100% for the purpose of diet preparation. Acetone accounted for no more than 1% of the total diet.

The composition of the basal diets for adult birds and their offspring was presented in the report. The test substance was not mixed into the diet of the offspring. Food and water were supplied ad libitum during acclimation and during the test for adults and offspring.

Samples of freshly prepared diets were collected on four occasions during the study for the analysis of benefin using gas chromatography. The homogeneity and stability of the test material at 100 and 1,000 ppm were determined prior to this study.

c. <u>Design</u>: The pens were assigned to treatment levels using a computer-generated table of random numbers. The test birds were distributed to the test pens using a computer-generated table of random numbers. The four groups were comprised of the following:

Benefin Nominal	Number	Birds	Per Pen
Concentration	of Pens	Males	Females
Control (0 ppm)	18	1	1
100 ppm	18	1	1
300 ppm	18	1	1
1,000 ppm	18	1	1

Treatment levels were based, in part, upon acute toxicity data. Adult birds were identified by individual leg bands. The primary phases of the study and their approximate durations were as follows:

- 1. Acclimation 3 weeks
- 2. Pre-production 10 weeks
- 3. Production 12 weeks
- Post-adult sacrifice (final incubation, hatching, 14-day offspring rearing period) - 5 weeks.
- pen Facilities: Adult birds were housed indoors in pens constructed of stainless steel. Pens measured approximately 57.5 x 76.2 x 40.6 cm high. The temperature in the adult study room was approximately 21°C with an average relative humidity of 40-70%.

The photoperiod for acclimation and the preproduction period of the study was 8 hours of light per day at an intensity of 235 lux. The photoperiod was increased to 17 hours of light per day two weeks prior to the production period.

- Adult Observations/Gross Pathology: The adult and juvenile birds were observed twice daily on the weekdays and once daily on the weekends and holidays throughout the study for signs of toxicity or abnormal behavior. All birds that died during the study were necropsied. The pen mate of dead birds was sacrificed and necropsied. At study termination, all surviving birds were sacrificed and necropsied. Adult birds were weighed at test initiation, weekly during acclimation and the preproduction period, and at study termination. Food consumption per pen was determined weekly throughout the study.
- F. Eggs/Eggshell Thickness: Eggs were collected daily, marked (date, pen number, and treatment level), candled, and stored in a refrigerator at 15°C. Cracked eggs or soft-shelled eggs were recorded and discarded. All cracked eggs for Set 4 and 6 were measured for

eggshell thickness and discarded. The remaining eggs were incubated in an incubator with a dry bulb temperature of 100°F and a wet bulb temperature of 85-90°F. The eggs were candled on days 14 and 21. On day 24 of incubation, live eggs were transferred to a hatcher with a dry bulb temperature of 98-100°F and a wet bulb temperature of 85-100°F.

When possible, the 7th, 14th, and 21st egg from each pen was collected for eggshell thickness determination. These eggs were opened at the girth, the contents removed, and the shell washed thoroughly to remove the albumen and allowed to air dry at room temperature for at least 48 hours. The average thickness of the dried shell plus membrane was determined by measuring (to the nearest 0.001 mm) two points around each half of the waist of the egg using a micrometer.

- Ratchlings: All hatchlings and unhatched eggs were removed from the hatcher on day 27 of incubation. The average body weight of the hatchlings by pen was then determined. Hatchlings were wingbanded for identification by parental pen and placed in brooding pens until 14 days of age. Each brooding pen measured 43.2 x 75.2 x 27.9 cm high with plastic-coated wire mesh floors. Each brooder was equipped with two heat lamps which maintained the temperature in the brooding pens at approximately 37°C during the 14-day survival period. Continuous light was provided. Relative humidity was maintained at 25-60%. At 14 days of age, the average body weight of all survivors was determined.
- statistics: Upon completion of the study, two-factor H. repeated measures analysis of variance (ANOVA) was used to assess the effects of benefin on adult body weight, hatchling body weight, and hatchling body weight gain. All other variables were analyzed using a one-way Proportional data (e.g., EC/EL and VE/ES) were subjected to arcsine transformation prior to analysis. "F-statistics were used to test the statistical significance of all main effect and interactions terms. Additionally, the statistical significance of linear trends across the concentration levels of benefin were examined to determine the concentration level below which no significant trend could be detected. references to statistical significance represent ". 20.05 g

Each of the following parameters was analyzed statistically:

Offspring Body Weight Adult Body Weight Offspring Food Adult Feed Consumption Consumption Egg Production 14-Day Old Survivors Eggs Laid per Hen Number of Eggs Laid 14-Day Survivors Eggs Cracked of Eggs Laid per Hen 14-Day Old Survivors of Viable Embryos of Eggs Set Live 3-Week Embryos of Eggs Laid 14-Day Old Survivors of Viable Embryos of Hatchlings Hatchlings of 3-Week Egg Shell Thickness Embryos

12. REPORTED RESULTS

<u>Diet Analysis</u>: Analyses conducted prior to this study showed that homogeneity and stability after 2 weeks were within acceptable limits. The results of the diet analyses are presented in Table 2 (attached). Nominal and mean measured concentrations of freshly prepared diets were as follows:

Benefin	(mqq)	
Nominal Concentration	Mean Measured Concentration	Percent of Nominal
0	<2	NA
100	97	97%
300	288	96%
1.000	975	97.5%

Subsequent discussions refer to the treatment groups using their mean measured concentrations.

B. <u>Mortality and Behavioral Reactions</u>: "No signs of toxicity were observed at any treatment level." One incidental mortality occurred in the control, 97-ppm group, and 288-ppm group.

Necropsy results of all mortalities and sacrificed birds were included in the report. "No compoundrelated gross or microscopic lesions were detected."

c. <u>Adult Body Weight and Food Consumption</u>: There were no significant differences in food consumption during the preproduction period between the control and treatment levels (Table 8, attached). A significant decrease in food consumption during the production period was noted

at the two lower test concentrations (Table 9, attached). However, no significant decrease was noted at the higher test level. Therefore, the slight decrease noted at the two lower test levels "does not appear to be related to increasing concentrations of benefin."

There were no apparent treatment related effects upon body weight or weight gain among birds at any of the concentrations tested (Tables 4-7, attached).

- P. Reproduction: When compared to the control group, there were no statistically significant differences in reproductive parameters, except the percentage of eggs cracked/eggs laid, at any concentration tested (Tables 10-12, attached). The ratio of eggs cracked/eggs laid was significantly higher at the highest test level (975 ppm) when compared to the control.
- E. Egg Shell Thickness: Eggshell thickness for cracked eggs and normal eggs was not affected by treatment. There was no significant difference between the control and test concentrations in mean egg shell thickness for normal eggs. Cracked control eggs were significantly thinner than normal eggs and thinner than cracked eggs from all treatment levels (Table 13, attached).
- f. Offspring Body Weight: When compared to the control, there was no significant reduction in mean body weights or body weight gain in any treatment group (Tables 16 and 17, attached). "Mean food consumption was slightly lower for hatchlings fed benefin when compared to the control." Mean offspring food consumption (g/bird/day) was as follows: 81 (control), 75 (97 ppm), 77 (288 ppm), and 67 (975 ppm).
- 13. STUDY AUTHOR'S CONCLUSIONS/QUALITY ASSURANCE MEASURES:
 "Based upon the results of this study and maximum use rate patterns, benefin is not expected to have any adverse effect to mallards." The NOEC was 288 ppm, due to an increase in the percentage of cracked eggs at 975 ppm.

The report stated that the study was conducted in compliance with EPA (FIFRA 40 CFR, Part 160), OECD and Japanese MAFF GLP standards. Quality assurance audits were conducted during the study and the final report was signed by the Quality Assurance Representative and the Study Director.

14. Reviewer's Discussion and Interpretation of the Study:

A. <u>Test Procedure</u>: The test procedures were in accordance with Subdivision E - Hazard Evaluation: Wildlife and Aquatic Organisms, ASTM, and SEP guidelines except for the following deviations:

The physical properties of the test material (i.e., powder, liquid) were not reported.

A withdrawal study period (using basal diet only) was not added to the test phase.

For this study, the light intensity provided to the test birds was 235 lux (22 footcandles). The light intensity recommended by the guidelines is 65 lux (6 footcandles).

During the preproduction phase of this study, the period of light provided to adult birds was 8 hours. The SEP recommends 7 hours of light.

For this study, the temperature in the offspring pens was 37°C. ASTM guidelines recommend a temperature gradient from the heat source to about 21°C in order to allow the birds to seek a proper temperature.

The report did not indicate whether the mallards used in this study were phenotypically indistinguishable from wild mallards as recommended.

Behavioral observations of offspring were not reported.

Observations on food palatability were not reported.

All eggs were transferred to the hatcher on day 24. The guidelines recommend the transfer on day 23.

On page 29 of the report, the authors state, "Mean food consumption was slightly lower for hatchlings fed benefin when compared to the control." However, benefin was not added to the hatchling diet (TEKLAD AN11DU) (pages 16 and 18). This is assumed to be a discrepancy in the report, rather than a deviation in procedures.

B. <u>Statistical Analysis</u>: Statistical analyses of study parameters were performed by the reviewer using analysis of variance (ANOVA) following square-root transformation of the count data and arcsine square-root transformation of the ratio data. The comparison between control data and data from each treatment level

was made using multiple comparison tests. The computer program used is based on the EEB Bigbird program, with an exception that the count data were square-root transformed before the ANOVA. The significance level was $p \leq 0.05$.

Analyses of study parameters were verified (attached) and found to match those reported by the author, with the exception of the percentage of eggs cracked. The authors reported a significant difference between the ratio of eggs cracked/eggs laid in the control and those of the 975 ppm group (p=0.03), while the reviewer's analysis showed no significant difference. However, the reviewer's analysis showed a difference at 975 ppm approaching the level of significance (p=0.089 for eggs cracked and p=0.061 for eggs laid/eggs cracked). Therefore, a conservative approach would be to assume that this is a treatment-related effect.

The reduced food consumption at 97 and 288 ppm does not appear to be a treatment effect.

c. <u>Discussion/Results</u>: This study is scientifically sound and fulfills the guideline requirements for an avian reproduction study. The mean measured dietary concentrations of benefin (97 ppm, 288 ppm, and 975 ppm) had no effects upon mortality, behavior, adult food consumption, or adult body weights in mallards during the 22-week exposure period. However, due to a high percentage of cracked eggs at 975 ppm, the NOEC was 288 ppm.

D. Adequacy of the Study:

- (1) Classification: Core.
- (2) Rationale: Deviations from protocols were minor and did not affect the validity of the study.
- (3) Repairability: N/A.
- 15. COMPLETION OF ONE-LINER: Yes; April 7, 1992.

		TRT	EL	EC	ES	VE
CASE	1	0	54	1	49	44
CASE	2	U	39	1	35	28
CASE	3	η,	52	0	49	45
CASE	4	V	46	0	43	39
CASE	5		46	3	40	34
CASE	6	4	53	8	42	33
CASE	7	1	67	1	63	57
CASE	8		45	2	40	37
CASE	9		61	8	48	41
CASE	10		61	2	56	51
CASE	11		56	6	47	43
CASE	12		69	17	49	44
CASE	13		36	2	31	30
CASE	14		57	1	53	52
CASE	15		31	0	28	27
CASE	16	\'/	62	1	58	55
CASE	17	V	61	1	57	41
CASE	18		54	5	46	45
CASE	19	A	57	2	52	47
CASE	20	1	33	0	30	29
CASE	21		57	4	50	48
CASE	22	- 1	60	1	56	49
CASE	23	1	75	15	57	51
CASE	24		63	0	60	55
CASE	25		45	2 2	40	37
CASE	26	1	61	2	56	51
CASE	27		2	0	0	0
CASE	28		44	0	41	40
CASE	29	1	0	•	•	•
CASE	30		56	6	47	42
CASE	31		46	0	43	39
CASE	→ 32		59	9	47	44
CASE	33		63	14	46	46
CASE	34	\mathbf{A}_{i}	45	3	39	31
CASE	35	\vee	14	O	12	11
_CASE	36		13	0	12	5
CASE	37	2	41	1 2	37	34
CASE	38	,	30	2	25	25
CASE	39		47	1 2	43	39
CASE	40	\/	9	2	5	5

CASE	41		54	5	46	0
CASE	42	^	40	29	8	8
CASE	43	2	63	9	51	45
CASE	44		76	.3	70	70
CASE	45		٠	•	:• ,	•
CASE	46		68	0	65	64
CASE	47		47	0	44	42
CASE	48		.53	1	49	46
CASE	49		36	12	21	20
CASE	50	I_{ij}	68	1	64	23
CASE	51	\ /	58	2	53	52
CASE	52	·V	22	2	17	16
CASE	53		75	2 2	70	67
CASE	54		77	2 1	72	69
CASE	55		65	1	61	59
CASE	56	3	58	4	51	47
CASE	57		38	6	28	26
CASE	58	ı	59	21	35	34
CASE	59		26	1	22	21
CASE	60		51	6	42	37
CASE	61		59	5	51	35
CASE	62	1,	72	4	65	58
CASE	63	\/	33	4	26	25
CASE	64	Ą	40	14	21	15
CASE	65		61	2	56	50
CASE	66		37	8 1	26	24
CASE	67		36		32·	32
CASE	68		48	1	44	41
CASE	69		54	1	50	48
CASE	70		45	17	25	24
CASE	71		64	3	58	49
CASE	72		69	6	60	51
						•

•

BENEFIN: MALLARD REPRODUCTION

		TILT	LE21		нат	TWOWK	
CASE	7			43	7	7	
CASE	1 2	0		28	13		
CASE	3	1		45	41		
CASE	3 4	l		39	34		
CASE	5			32	26		
CASE	6	1		33	23		
CASE	7			57	26		
CASE	8			35	32		
CASE	9	-	-	39	6		
CASE	10			51	31		
CASE	11	\//		42	31		
CASE	12	V		44	32		
CASE	13)		30	23	22	
CASE	14	1		51	39		
CASE	15			26	13		
CASE	16	N/		53	45		
CASE	17	V		40	27		
CASE	18	-		<u>4</u> 5	31		
CASE	19	Λ		47	40		
CASE	20	1	-	29	27		
CASE	21			48	31		
CASE	22	- 1		49	42		
CASE	23			39	1		
CASE	24	1		53	32		
CASE	25			37	35		
CASE	26			50	3(
CASE	27			0		0	
CASE	28			39	32	2 · 27	
CASE	29			•		•	
CASE	30			42	38		
CASE	31	Ì		39	33		
CASE	32			44	4(
CASE	33			46	4(
CASE	34	\		31	10		
CASE	3.5	\vee		10		7 6 5 5	
CASE	36			5		-	
CASE	37	2		34	2:		
CASE	38	Ī		25	1!		
CASE	39			39	3.		2
CASE	40	V	,	4	•	2	5

							,
	•				_		
CASE	41	2	0	0	0		
CASE	42	4	8	6	4		
CASE	43	.	45	32	17		
CASE	44		7.0	46	29		
CASE	45			•	•		
CASE	46]	64	38	38		
CASE	47	•	41	29	25		
CASE	48		45	32	29		
CASE	49		18	15	15		
CASE	50		23	20	19		
CASE	51		52	34	17		
CASE	52	V	16	.6	5		
CASE	53		67	45	42		
CASE	54		<u>6</u> 9	56	56		
CASE	55	2	56	29	26		
CASE	56	3	47	3.0	24		
CASE	57	•	26	23	23		
CASE	58	1	34	20	20		
CASE	59		21	19	16		3
CASE	60	1	37	29	24		
CASE	61		34	10	10		
CASE	62		58	52	48		
CASE	63		25	19	16		
CASE	64		14	2	2 25		
CASE	65		50	25	25		
CASE	66		24	12	12		
CASE	67	.	31	25	22		
CASE	68	\!	37	36	25		
CASE	69	\bigvee	48	36	36		
CASE	70		24	9	9		
CASE	71		49	42	38		
CASE	72		50	32	21		
,							
-							
		ر خد صو			*		

ANOVA on SQR(Eggs Laid)

	LEVELS	ENCOUNTERED	DURING	PROCESSING	ARE:
--	---------------	-------------	--------	------------	------

TRT

0.000

1.000

2.000

3.000

71 MULTIPLE R: 0.251 SQUARED MULTIPLE R: 0.063 DEP VAR: SEL N:

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	P
TRT	11.110	3	3.703	1.506	0.221
ERROR	164.793	67	2.460		

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	.F	P
HYPOTHESIS ERROR	9.415 164.793	1 67	9.415 2.460	3.828	0.055

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	0.597 164.793	1 67	0.597 2.460	0.243	0.624

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS	0.237 164.793	1 67	0.237 2.460	0.096	0.757

ANOVA on SQR(Eggs Cracked)

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

0.000 1.000 2.000 3.000

ANALYSIS OF VARIANCE

MEAN-SQUARE F-RATIO P SUM-OF-SQUARES DF SOURCE 1.709 0.174 2.510 3 TRT 7.530 66 1.469 ERROR 96.942

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

Р F MS SOURCE SS DF 0.675 0.260 0.177 0.260 1 HYPOTHESIS 96.942 66 1.469 ERROR

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

 $\mathbf{T}\mathbf{R}\mathbf{T}$

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	0.336 96.942	1 66	0.336 1.469	0.229	0.634

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	4.386 96.942	1 66	4.386 1.469	2.986	0.089

ANOVA on SQR(Eggs Set)

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

0.000

1.000

2.000

3.000

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	P .
TRT	4.591	.3	1.530	0.643	0.590
ERROR	157.041	66	2.379		

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	ŕ	P
HYPOTHESIS ERROR	4.465 157.041	1 66	4.465 2.379	1.877	0.175

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

 $\mathbf{T}\mathbf{R}\mathbf{T}$

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	1.745 157.041	1 66	1.745 2.379	0.733	0.395

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	ss	DF	MS	F	P
HYPOTHESIS ERROR	1.511 157.041	1 66	1.511 2.379	0.635	0.428

ANOVA on SQR(Viable Embryos)

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

0.000

1.000

2.000

3.000

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

TRT 6.468 3 2.156 0.772 0.514

ERROR 184.316 66 2.793

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

F P MS SOURCE SS DF 1.382 0.244 3.859 HYPOTHESIS 3.859 1 184.316 66 2.793 ERROR

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	5.418 184.316	1 66	5.418 2.793	1.940	0.168

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	\mathbf{P}
HYPOTHESIS ERROR	1.246 184.316	1 66	1.246 2.793	0.446	0.506

ANOVA on SQR(21-day Live Embryos)

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

0.000 1.000

2.000

3.000

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	P
TRT	6.419	3	2.140	0.766	0.517
ERROR	184.364	66	2.793		

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TEST OF HYPOTHESIS

P F MS DF SOURCE SS 0.229 1.471 1 4.110 HYPOTHESIS 4.110 2.793 184.364 66 ERROR

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	5.131 184.364	1 66	5.131 2.793	1.837	0.180

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	ss	DF	MS	F	P
HYPOTHESIS ERROR	1.195 184.364	1 66	1.195 2.793	0.428	0.515

ANOVA on SQR(Hatched)

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

1.000

2.000

3.000

SHAT N: 70 MULTIPLE R: 0.086 SQUARED MULTIPLE R: 0.007 DEP VAR:

ANALYSIS OF VARIANCE

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P

TRT 1.427 3 0.476 0.164 0.920

2.900 ERROR 191.417 66

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

DF F P SOURCE MS SS 0.236 0.629 HYPOTHESIS 0.683 1 0.683 191.417 2,900 ERROR 66

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	1.335 191.417	1 66	1.335 2.900	0.460	0.500

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	0.417 191.417	1 66	0.417 2.900	0.144	0.706

ANOVA on SQR(Two week Survivors)

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

0.000

1.000

2.000

3.000

ANALYSIS OF VARIANCE

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P SOURCE 0.811 0.831 0.320 3 2.492 TRT 2.599 171.549 66 ERROR

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

P MS F DF SOURCE SS 0.645 0.557 0.214 HYPOTHESIS 0.557 1 2.599 171.549 66 ERROR

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	, P
HYPOTHESIS ERROR	2.234 171.549	1 66	2.234 2.599	0.860	0.357

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	0.107 171.549	1 66	0.107 2.599	0.041	0.840

ANOVA on EC/EL

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

0.000 1.000 2.000

3.000

DEP VAR: RESP1 N: 70 MULTIPLE R: 0.306 SQUARED MULTIPLE R: 0.094

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	P
TRT	804.830	3	268.277	2.274	0.088
ERROR	7785.896	66	117.968		

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	24.620 7785.896	1 66	24.620 117.968	0.209	0.649

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	151.506 7785.896	1 66	151.506 117.968	1.284	0.261

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	ss	DF	MS	F	P
HYPOTHESIS ERROR	429.353 7785.896	1 66	429.353 117.968	3.640	0.061

ANOVA on VE/ES

LEVELS	ENCOUNTERED	DURING	PROCESSING	ARE:
--------	-------------	--------	------------	------

TRT

1.000 2.000 0.000

3.000

69 MULTIPLE R: 0.038 SQUARED MULTIPLE R: 0.001 N: RESP2 DEP VAR:

ANALYSIS OF VARIANCE

F-RATIO P SUM-OF-SQUARES DF MEAN-SQUARE SOURCE 0.992 0.031 TRT 16.736 3 5.579 11564.154 65 177.910 ERROR

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	0.199 11564.154	1 65	0.199 177.910	0.001	0.973

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	6.378 11564.154	1 65	6.378 177.910	0.036	0.850

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	12.587 11564.154	1 65	12.587 177.910	0.071	0.791

ANOVA on LE21/VE

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

0.000

1.000

2.000

3.000

DEP VAR: RESP3 N: 68 MULTIPLE R: 0.083 SQUARED MULTIPLE R: 0.007

ANALYSIS OF VARIANCE

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO SOURCE 7.513 0.147 0.931 22.540 3 TRT 3263.906 64 50.999 ERROR

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	4.203 3263.906	1 64	4.203 50.999	0.082	0.775

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	18.453 3263.906	1 64	18.453 50.999	0.362	0.550

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	14.137 3263.906	1 64	14.137 50.999	0.277	0.600

ANOVA on HAT/LE21

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

0.000 1.000 2.000 3.000

68 MULTIPLE R: 0.195 SQUARED MULTIPLE R: 0.038 DEP VAR: RESP4 N:

ANALYSIS OF VARIANCE

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO SOURCE 0.473 0.848 178.450 3 TRT 535.351

64 210.499 13471.965 ERROR

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED:

TEST OF HYPOTHESIS

SS DF MS F SOURCE 2.093 0.153 HYPOTHESIS 440.570 1 440.570 64 210.499 13471.965 ERROR

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	28.538 13471.965	1 64	28.538 210.499	0.136	0.714

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	ss	DF	MS	F	P
HYPOTHESIS ERROR	3.488 13471.965	1 64	3.488 210.499	0.017	0.898

ANOVA on TWOWK/HAT

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

3.000 2.000 1.000

DEP VAR: RESP5 N: 68 MULTIPLE R: 0.202 SQUARED MULTIPLE R: 0.041

ANALYSIS OF VARIANCE

SUM-OF-SQUARES DF MEAN-SQUARE F-RATIO P SOURCE

0.905 0.444 3 191.196 TRT 573.589

13527.810 64 211.372 ERROR

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SS DF MS F SOURCE 92.384 0.511 1 92.384 0.437 HYPOTHESIS 13527.810 64 211.372 ERROR

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED:

TRT

TEST OF HYPOTHESIS

SS DF MS F P SOURCE 0.056 0.815 11.732 1 HYPOTHESIS 11.732 211.372 64 ERROR 13527.810

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	343.518 13527.810	1 64	343.518 211.372	1.625	0.207

ANOVA on HAT/ES

LEVELS ENCOUNTERED DURING PROCESSING ARE:

1.000 0.000

2.000

3.000

69 MULTIPLE R: 0.148 SQUARED MULTIPLE R: 0.022 DEP VAR: RESP6 N:

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	P
TRT	306.671	3	102.224	0.484	0.694
ERROR	13715.914	65	211.014		

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	188.921 13715.914	1 65	188.921 211.014	0.895	0.348

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	8.688 13715.914	1 65	8.688 211.014	0.041	0.840

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	ss	DF	MS	F	P
HYPOTHESIS ERROR	9.009 13715.914	1 65	9.009 211.014	0.043	0.837

ANOVA on TWOWK/ES

LEVELS ENCOUNTERED DURING PROCESSING ARE:

TRT

0.000

1.000

2.000

3.000

DEP VAR: RESP7 N: 69 MULTIPLE R: 0.175 SQUARED MULTIPLE R: 0.031

ANALYSIS OF VARIANCE

SOURCE	SUM-OF-SQUARES	DF	MEAN-SQUARE	F-RATIO	P
TRT	379.139	3	126.380	0.688	0.563
ERROR	11938.949	65	183.676		

Post-hoc contrast of treatment 1 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS	114.549	1	114.549	0.624	0.433
ERROR	11938.949	65	183.676		

Post-hoc contrast of treatment 2 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS ERROR	68.375 11938.949	1 65	68.375 183.676	0.372	0.544

Post-hoc contrast of treatment 3 with control.

TEST FOR EFFECT CALLED: TRT

TEST OF HYPOTHESIS

SOURCE	SS	DF	MS	F	P
HYPOTHESIS	28.519	1	28.519	0.155	0.695
ERROR	11938.949	65	183.676		

SUMMARY STATISTICS FOR EL

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES

CHI-SOUARE = 11.060 DF= 3 PROBABILITY = 0.011

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F PROBABILITY SOURCE

262.644 0.888 0.452 BETWEEN GROUPS 787.932 3

295.687 19811.026 67 WITHIN GROUPS

SUMMARY STATISTICS FOR EC

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES

4.701 DF= 3 PROBABILITY = 0.195 CHI-SOUARE =

ANALYSIS OF VARIANCE

SUM OF SQUARES DF MEAN SQUARE F PROBABILITY SOURCE

74.232 3 2072.111 66 24.744 0.788 0.505 BETWEEN GROUPS WITHIN GROUPS

31.396

SUMMARY STATISTICS FOR ES

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES

CHI-SQUARE = 10.774 DF= 3 PROBABILITY = 0.013

ANALYSIS OF VARIANCE

SOURCE SUM OF SQUARES DF MEAN SQUARE F PROBABILITY

337.672 3 112.557 0.416 0.742 BETWEEN GROUPS
WITHIN GROUPS 17854.971 66 270.530

SUMMARY STATISTICS FOR VE

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES

CHI-SQUARE = 14.299 DF= 3 PROBABILITY = 0.003

ANALYSIS OF VARIANCE

SOURCE SUM OF SQUARES DF MEAN SQUARE F PROBABILITY

266.936 3 17259.007 66 0.340 0.796 BETWEEN GROUPS
WITHIN GROUPS 88.979

261.500

SUMMARY STATISTICS FOR LE21

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES

CHI-SQUARE = 14.591 DF= 3 PROBABILITY = 0.002

ANALYSIS OF VARIANCE

SOURCE SUM OF SQUARES DF MEAN SQUARE F PROBABILITY

BETWEEN GROUPS 261.636 3 87.212 0.338 0.798

WITHIN GROUPS 17009.850 66 257.725

SUMMARY STATISTICS FOR HAT

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES

CHI-SQUARE = 2.964 DF= 3 PROBABILITY = 0.397

ANALYSIS OF VARIANCE

SOURCE SUM OF SQUARES DF MEAN SQUARE F PROBABILITY

BETWEEN GROUPS 32.733 3 10.911 0.058 0.982

WITHIN GROUPS 12502.353 66 189.430

SUMMARY STATISTICS FOR TWOWK

BARTLETT TEST FOR HOMOGENEITY OF GROUP VARIANCES

CHI-SQUARE = 2.850 DF= 3 PROBABILITY = 0.415

ANALYSIS OF VARIANCE

SOURCE SUM OF SQUARES DF MEAN SQUARE F PROBABILITY

BETWEEN GROUPS 40.411 3 13.470 0.085 0.968

WITHIN GROUPS 10449.889 66 158.332

BENEFIN: MALLARD REPRODUCTION

KOLMOGOROV-SMIRNOV ONE SAMPLE TEST USING STANDARD NORMAL DISTRIBUTION

VARIABLE	N-OF-CASES	MAXDIF PROBA	BILITY (2-TAIL)
EL	71.000	0.972	0.000
EC	70.000	0.670	0.000
ES	70.000	0.986	0.000
VE	70.000	0.971	0.000
LE21	70.000	0.971	0.000
ТАН	70.000	0.934	0.000
TWOWK	70.000	0.934	0.000